The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome in humans and mice.
نویسندگان
چکیده
Hemolytic uremic syndrome (HUS) is a potentially life-threatening condition. It often occurs after gastrointestinal infection with E. coli O157:H7, which produces Shiga toxins (Stx) that cause hemolytic anemia, thrombocytopenia, and renal injury. Stx-mediated changes in endothelial phenotype have been linked to the pathogenesis of HUS. Here we report our studies investigating Stx-induced changes in gene expression and their contribution to the pathogenesis of HUS. Stx function by inactivating host ribosomes but can also alter gene expression at concentrations that minimally affect global protein synthesis. Gene expression profiling of human microvascular endothelium treated with Stx implicated a role for activation of CXCR4 and CXCR7 by their shared cognate chemokine ligand (stromal cell-derived factor-1 [SDF-1]) in Stx-mediated pathophysiology. The changes in gene expression required a catalytically active Stx A subunit and were mediated by enhanced transcription and mRNA stability. Stx also enhanced the association of CXCR4, CXCR7, and SDF1 mRNAs with ribosomes. In a mouse model of Stx-mediated pathology, we noted changes in plasma and tissue content of CXCR4, CXCR7, and SDF-1 after Stx exposure. Furthermore, inhibition of the CXCR4/SDF-1 interaction decreased endothelial activation and organ injury and improved animal survival. Finally, in children infected with E. coli O157:H7, plasma SDF-1 levels were elevated in individuals who progressed to HUS. Collectively, these data implicate the CXCR4/CXCR7/SDF-1 pathway in Stx-mediated pathogenesis and suggest novel therapeutic strategies for prevention and/or treatment of complications associated with E. coli O157:H7 infection.
منابع مشابه
Detection of eaeA, hlyA, stx1 and stx2 genes in pathogenic Escherichia coli isolated from broilers affected with colibacillosis
Background: Foodborne outbreaks associated with shiga toxin-producing Escherichia coli (STEC) have been well documented worldwide. STECs are major causative agents of gastroenteritis in humans that may be complicated by hemorrhagic colitis (HC), hemolytic uremic syndrome (HUS), and thrombotic thrombocytopenia purpura (TTP). OBJECTIVES: The aim of this study was to investigate the presence of vi...
متن کاملSyntheses and immunologic properties of Escherichia coli O157 O-specific polysaccharide and Shiga toxin 1 B subunit conjugates in mice.
Escherichia coli O157 is the major cause of diarrhea-associated hemolytic uremic syndrome (HUS). Strains causing HUS contain either Shiga toxin 1 (Stx1) or Stx2, or both. In adult volunteers, conjugate vaccines of detoxified lipopolysaccharide (LPS) elicited bactericidal antibodies to E. coli O157. Here, the detoxified LPS was conjugated with improved schemes to the nontoxic B subunit of Stx1. ...
متن کاملShiga toxin-producing Escherichia coli (STEC).
Shiga toxin-producing Escherichia coli (STEC) are important enteric pathogens worldwide, causing diarrhea with or without blood visibly present and hemolytic uremic syndrome. STEC are unique among diarrheogenic E coli in producing Shiga toxin type 1 and type 2, the virulence factors responsible for bloody diarrhea and hemolytic uremic syndrome. Cattle and other ruminants are the natural reservo...
متن کاملThe Role of Lymphostatin/EHEC Factor for Adherence-1 in the Pathogenesis of Gram Negative Infection
Lymphostatin/EHEC factor for adherence-1 is a novel large toxin represented in various Gram negative bacteria, highly associated with the development of infectious diarrhea and hemolytic uremic syndrome. In vitro and in vivo experiments identified lymphostatin/EFA-1 as a toxin with a central role in the pathogenesis of Gram negative bacteria, responsible for bacterial adhesion, intestinal colon...
متن کاملEscherichia coli Shiga Toxin Mechanisms of Action in Renal Disease
Shiga toxin-producing Escherichia coli is a contaminant of food and water that in humans causes a diarrheal prodrome followed by more severe disease of the kidneys and an array of symptoms of the central nervous system. The systemic disease is a complex referred to as diarrhea-associated hemolytic uremic syndrome (D(+)HUS). D(+)HUS is characterized by thrombocytopenia, microangiopathic hemolyti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 122 2 شماره
صفحات -
تاریخ انتشار 2012